INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION

SEPTEMBER 2019

SET A

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.N O.	Answers	Mark
O.		S
		(with
		split
1		up)
1.	(a)	1
2.	(a)	1
3.	(d)	1
4.	(d)	1
5.	(d)	1
		1
6.	(a)	1
7.	(c)	1
8.	(b)	1
9.	(C)	1
10.	(B)	1
11	(b)	1
11.		1
12.	(d)	1
13.	(b)	1
14.	(d)	1
15.	(d)	1
16.	(c)	1

17.	(a)	1
18.	(a)	1
19.	Lorentz force	1
20.	Inversely	
21.	Using Gauss's Theorem $\oint E \cdot ds = \frac{q(I)}{\varepsilon_0}$	
	Electric flux through sphere S_1 , $\phi_1 = \frac{2(q)}{\epsilon_0}$	
	Electric flux through sphere S_2 , $\phi = \frac{(2Q + 4Q)}{\varepsilon_0} = \frac{6Q}{\varepsilon_0}$	
	Ratio $\frac{\phi_1}{\phi} = \frac{\frac{2Q}{\epsilon_0}}{\frac{6Q}{2}} = \frac{1}{3}$	1
	If a medium of dielectric constant $K(=\varepsilon_r)$ is filled in the sphere S_1 , electric flux through sphere, $\phi_1' = \frac{2Q}{\varepsilon_r \varepsilon_0} = \frac{2Q}{K\varepsilon_0}$	1
22.	For stable equilibrium $\theta_1 = 0^0$ For unstable equilibrium $\theta_2 = 180^0$ $W = pE (\cos \theta_1 - \cos \theta_2)$ $= pE (\cos 0^0 - \cos 180^0)$ = 2pE	1
23.	$E_{net} = 10-4 = 6 \text{ V}$	1
	I = 6/6 = 1A	1
	For charging $V = E + Ir$	
	= 4 + 1x1 = 5V OR	
	$E=(E_1 r_2 + E_2 r_1)/r_1 + r_2$	
	= $(1.5 \times 0.3 + 2 \times 0.2)/0.2 + 0.3$ = 1.7 V	1
	$r = r_1 r_2 / (r_1 + r_2)$	
	$=(0.2 \times 0.3)/(0.2 + 0.3)$	
	$=0.12~\Omega$	1

24.	Derivation of expression for drift velocity of free electrons in a metallic conductor	2
25.	$V = \sqrt{3} H$	
	$\tan\theta = V/H$	1/2
	$\theta = 60^{0}$	11/2
26.	Derivation- current leads the voltage in phase by $\pi/2$ in an a.c. circuit containing an ideal capacitor.	2
27.	Diagram	1/2
	Derivation of magnetic field in the interior of the solenoid.	11/2
	OR	
	Diagram	1/2
	Derivation of magnetic field in the interior of the toroid.	11/2
28.	(i) Derivation of torque experience by dipole in uniform electric field	
	Diagram	1/2
	Derivation	2
	(ii) Resulting motion is combination of translational and rotational motion. OR	1/2
	(i) Definition of torque experience by dipole in uniform electric field	1/2
	Torque in vector form.	1/2
	(ii) Stable equilibrium $\theta = 0^0$ and diagram , $\tau = 0$ Unstable equilibrium $\theta = 180^0$ and diagram , $\tau = 0$	1/2, 1/2
	Unstable equilibrium $\theta = 180^0$ and diagram , $\tau = 0$	1/2 1/2
29.	Charge on shell A , $q_A = 4\pi a^2 \sigma$	
	Charge on shell B , $q_B = -4\pi b^2 \sigma$	
	Charge of shell C , $q_C = 4\pi c^2 \sigma$	
	Potential of shell A: Any point on the shell A lies inside the shells B and C.	
	$V_A = rac{1}{4\pi\epsilon_0} \left[rac{q_A}{a} + rac{q_B}{b} + rac{q_C}{C} ight]$	
	$=\frac{1}{4\pi\varepsilon_0}\left[\frac{4\pi a^2 \sigma}{a}-\frac{4\pi b^2 \sigma}{b}+\frac{4\pi c^2 \sigma}{c}\right]$	
	$=\frac{\sigma}{\varepsilon_0}\left(a-b+c\right)$	
	Any point on B lies outside the shell A and inside the shell C. Potential of shell B,	1
	$V_B = \frac{1}{4\pi\varepsilon_0} \left[\frac{q_A}{b} + \frac{q_B}{b} + \frac{q_C}{c} \right]$	
	$=\frac{1}{4\pi\varepsilon_0}\left[\frac{4\pi a^2\sigma}{b}-\frac{4\pi b^2\sigma}{b}+\frac{4\pi c^2\sigma}{c}\right]=\frac{\sigma}{\varepsilon_0}\left[\frac{a^2}{b}-b+c\right]$	
	Any point on shell C lies outside the shells A and B. Therefore, potential of shell C. $V_C = \frac{1}{4\pi\epsilon_0} \left[\frac{q_A}{c} + \frac{q_B}{b} + \frac{q_C}{c} \right]$	
	$=\frac{1}{4\pi\epsilon_0} \left[\frac{4\pi a^2 \sigma}{c} - \frac{4\pi b^2 \sigma}{c} + \frac{4\pi c^2 \sigma}{c} \right]$	
	$=\frac{\sigma}{\varepsilon_0}\left[\frac{a^2}{c}-\frac{b^2}{c}+c\right]$	
	Now, we have	
	$V_A = V_C$	1
	$\frac{\sigma}{\varepsilon_0}(a-b+c) = \frac{\sigma}{\varepsilon_0} \left(\frac{a^2}{c} - \frac{b^2}{c} + c \right)$	
	$a-b=\frac{(a-b)(a+b)}{c}$	1
	or $a+b=c$	1

30.	Potentiometer: Circuit diagram Principle Method for to compare the emfs of the two cells.	1/2 1/2 2
	OR	_
	Meter bridge: Circuit diagram	1/2
	Principle	1/2
	Determination the unknown resistance of a given wire	2
31.	(i) We know that if the number of turns in the inductor decreases, then inductance L decreases. So, the net resistance of the circuit decreases and, hence, the current through the circuit increases, increasing the brightness of the bulb.	1
	(ii) If soft iron rod is inserted in the inductor, then the inductance L increases. Therefore, the current through the bulb will decrease, decreasing the brightness of the bulb.	
	(iii) If the capacitor of reactance $X_{\mathbb C}$ = $X_{\mathbb L}$ is connected in series with the circuit, then $Z=\sqrt{(X_L-X_C)^2+R^2}$	1
	$\Rightarrow Z = R \; (\because X_L = X_C)$	
	This is a case of resonance. In this case, maximum current will flow through the circuit. Hence, the brightness of the bulb will increase.	1
32.		1+1+
	(i) intensity of magnetization (ii) behavior in non uniform magnetic field and (iii) susceptibility	1
33	Vertical component of earth magnetic field	
33.	$V = B_e \sin \theta$	1
	v = 1800 km/h = 500 m/s	
	Induced emf	
	$\varepsilon = Vvl = (B_e \sin \theta) vl$	
	$= (5 \times 10^{-4} \times 0.5) \times 500 \times 25 = 3.1 \text{ V}$	2
34.	(i) Given $V = V_0 \sin(1000t + \phi)$ $\omega = 1000 \text{ s}^{-1}$	
	Given,	
	L = 100 mH	
	$C = 2 \mu F$	
	R = 400 Ω	
	Phase difference ϕ = tan-1 $(rac{X_L - X_C}{R})$	
	$X_I = \omega L = 1000 \times 100 \times 10^{-3} = 100 \ \Omega$	1/2
	$X_C = \frac{1}{\omega C} = \frac{1}{1000 \times 2 \times 10^{-6}} = 500 \ \Omega$	1/2
	ϕ = tan ⁻¹ ($\frac{100-500}{400}$)= tan ⁻¹ (-1)	
	ϕ = -45 0 and the current is leading the voltage.	1/2

		1
	(ii) For power factor to be unity, $R = Z$	1/2
35.	or $X_L = X_C$ $\omega^2 = \frac{1}{LC} (C = \text{resultant capacitance})$ $10^6 = \frac{1}{100 \times 10^{-3} \times C'}$ $\Rightarrow C' = 10^{-5} \text{ F}$ For two capacitance in parallel, resultant capacitance $C' = C + C_1$ $10^{-5} = 0.2 \times 10^{-5} + C_1$ $\Rightarrow C_1 = 8 \ \mu\text{F}$ (i) Derivatyion of PE stored per unit volume $u_e = \frac{1}{2} \epsilon_0 E^2$	1/2
	(ii) $C_s = 2/3 C$ $C_P = 3C$ $V_p = 3C$ $V_p / V_s = \sqrt{2/3}$ OR	2
	(i) Definition of capacitance & derivation of $C_0 = \epsilon_0 A/d$ (ii)	
	Capacitance of a capacitor without dielectric is given by: $C_o = \frac{\varepsilon_o A}{d} \ldots \cdot \left(\mathrm{i} \right)$	
	Capacitance of capacitor when its plates are partly filled with dielectric of thickness t and of same area as the plates is $C = \frac{\varepsilon_o A}{d - t \left(1 - \frac{1}{K}\right)}$ Here, $t = \frac{3d}{4}$ $C = \frac{\varepsilon_o A}{d - \frac{3d}{4} \left(1 - \frac{1}{K}\right)} = \frac{\varepsilon_o A}{\frac{dK + 3d}{4K}} = \frac{\varepsilon_o A(4K)}{dK + 3d}$ $= \frac{\varepsilon_o A(4K)}{d(K+3)} = \frac{4K}{(K+3)} \times \frac{\varepsilon_o A}{d}$ Therefore, the ratio of the capacitance with dielectric inside it to its capacitance without the dielectric is $\frac{C_o}{C} = \frac{\frac{4K}{(K+3)} \times \frac{\varepsilon_o A}{d}}{\frac{\varepsilon_o A}{d}} = \frac{4K}{(K+3)}$	1/2 .21/2
		2
36.	Moving coil galvanometer:	
	Diagram	1/2
	Principle	1/2
	working	11/2

	Function of uniform radial magnetic field	1/2
	Function of soft iron core	
	Definition of (i) current sensitivity and (ii) voltage sensitivity of a galvanometer.	1/2 1/2
	OR	
	Cyclotron:	
	Diagram	1/2
	Principle	1/2
	working	1
	Show that the period of a revolution of an ion is independent of its speed or radius of the orbit	2
	Any two uses of Cyclotron	1/2 1/2
37.	(i) Definition mutual inductance and its SI unit.	1,1/2
	(ii) Derivation of mutual induction between of two long co-axial solenoids of same	
	length wound one over the other. $M = (\mu_0 N_1 N_2 \pi r^2)/L$	21/2
	Any two factors on which mutual inductance depend.	1/2 1/2
	OR	
	(i) Definition self inductance and its SI unit.	1,1/2
	(ii) Derivation of expression self induction of long solenoid.	2½
	Any two factors on which self inductance depend.	1/2 1/2