INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION SEPTEMBER 2019

SET A

CLASS XII

Marking Scheme - PHYSICS [THEORY]

$\begin{aligned} & \text { Q.N } \\ & \text { O. } \end{aligned}$		Answers	Mark s (with split up)
1.	(a)		1
2.	(a)		1
3.	(d)		1
4.	(d)		1
5.	(d)		1
6.	(a)		1
7.	(c)		1
8.	(b)		1
9.	(C)		1
10.	(B)		1
11.	(b)		1
12.	(d)		1
13.	(b)		1
14.	(d)		1
15.	(d)		1
16.	(c)		1

\begin{tabular}{|c|c|c|}
\hline 17. \& (a) \& 1 \\
\hline 18. \& (a) \& 1 \\
\hline 19. \& Lorentz force \& 1 \\
\hline 20. \& Inversely \& \\
\hline 21. \& \begin{tabular}{l}
(Using Gauss's Theorem \(\oint \hat{E} . d s=\frac{q(I)}{\varepsilon_{0}}\) \\
Electric flux through sphere \(S_{1}, \phi_{1}=\frac{2(q)}{\varepsilon_{0}}\) \\
Electric flux through sphere \(S_{2}, \phi=\frac{(2 Q+4 Q)}{\varepsilon_{0}}=\frac{6 Q}{\varepsilon_{0}}\) \\
Ratio \(\frac{\phi_{1}}{\phi}=\frac{\frac{2 Q}{\varepsilon_{0}}}{\frac{6 Q}{\varepsilon_{0}}}=\frac{1}{3}\) \\
If a medium of dielectric constant \(K\left(=\varepsilon_{r}\right)\) is filled in the sphere \(S_{1}\), electric flux through sphere, \(\phi_{1}^{\prime}=\frac{2 Q}{\varepsilon_{r} \varepsilon_{0}}=\frac{2 Q}{K \varepsilon_{0}}\)
\end{tabular} \& 1 \\
\hline 22. \& \[
\begin{aligned}
\& \text { For stable equilibrium } \theta_{1}=0^{0} \\
\& \text { For unstable equilibrium } \theta_{2}=180^{0} \\
\& \begin{aligned}
\mathrm{W} \& =\mathrm{pE}\left(\cos \theta_{1}-\cos \theta_{2}\right) \\
\& =\mathrm{pE}\left(\cos 0^{0}-\cos 180^{0}\right) \\
\& =2 \mathrm{pE}
\end{aligned}
\end{aligned}
\] \& 1 \\
\hline 23. \& \begin{tabular}{l}
\[
\begin{aligned}
\& E_{\text {net }}=10-4=6 \mathrm{~V} \\
\& I=6 / 6=1 A
\end{aligned}
\] \\
For charging \(\mathrm{V}=\mathrm{E}+\mathrm{Ir}\)
\[
=4+1 \times 1=5 \mathrm{~V}
\]
\[
\begin{aligned}
\mathrm{E} \& =\left(\mathrm{E}_{1} \mathrm{r}_{2}+\mathrm{E}_{2} \mathrm{r}_{1}\right) / \mathrm{r}_{1}+\mathrm{r}_{2} \\
\& =(1.5 \times 0.3+2 \times 0.2) / 0.2+0.3 \\
\& =1.7 \mathrm{~V}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{r} \& =\mathrm{r}_{1} \mathrm{r}_{2} /\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \\
\& =(0.2 \times 0.3) /(0.2+0.3) \\
\& =0.12 \Omega
\end{aligned}
\]
\end{tabular} \& 1
1
1

1
1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 24. \& Derivation of expression for drift velocity of free electrons in a metallic conductor \& 2 \\
\hline 25. \& \[
\begin{aligned}
\& \mathrm{V}=\sqrt{3} \mathrm{H} \\
\& \tan \theta=\mathrm{V} / \mathrm{H} \\
\& \theta=60^{\circ}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 / 2 \\
\& 11 / 2
\end{aligned}
\] \\
\hline 26. \& Derivation- current leads the voltage in phase by \(\pi / 2\) in an a.c. circuit containing an ideal capacitor. \& 2 \\
\hline 27. \& \begin{tabular}{l}
Diagram \\
Derivation of magnetic field in the interior of the solenoid. \\
OR \\
Diagram \\
Derivation of magnetic field in the interior of the toroid.
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 11 / 2 \\
\& 1 / 2 \\
\& 11 / 2
\end{aligned}
\] \\
\hline 28. \& \begin{tabular}{l}
(i) Derivation of torque experience by dipole in uniform electric field Diagram \\
Derivation \\
(ii) Resulting motion is combination of translational and rotational motion. \\
OR \\
(i) Definition of torque experience by dipole in uniform electric field Torque in vector form. \\
(ii) Stable equilibrium \(\theta=0^{0}\) and diagram , \(\tau=0\) Unstable equilibrium \(\theta=180^{\circ}\) and diagram , \(\tau=0\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 2 \\
\& 1 / 2 \\
\& \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2,1 / 2 \\
\& 1 / 21 / 2
\end{aligned}
\] \\
\hline 29. \& \begin{tabular}{l}
Charge on shell \(A, q_{A}=4 \pi a^{2} \sigma\) \\
Charge on shell \(B, q_{B}=-4 \pi b^{2} \sigma\) \\
Charge of shell \(C, q_{C}=4 \pi c^{2} \sigma\) \\
Potential of shell \(A\) : Any point on the shell \(A\) lies inside the shells \(B\) and \(C\).
\[
\begin{aligned}
V_{A} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{a}+\frac{q_{B}}{b}+\frac{q_{C}}{C}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{a}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right] \\
\& =\frac{\sigma}{\varepsilon_{0}}(a-b+c)
\end{aligned}
\] \\
Any point on \(B\) lies outside the shell \(A\) and inside the shell \(C\). Potential of shell \(B\),
\[
\begin{aligned}
V_{B} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{b}+\frac{q_{B}}{b}+\frac{q_{C}}{c}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{b}-\frac{4 \pi b^{2} \sigma}{b}+\frac{4 \pi c^{2} \sigma}{c}\right]=\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}}{b}-b+c\right]
\end{aligned}
\] \\
Any point on shell \(C\) lies outside the shells \(A\) and \(B\). Therefore, potential of shell \(C\).
\[
\begin{aligned}
V_{C} \& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{A}}{c}+\frac{q_{B}}{b}+\frac{q_{C}}{c}\right] \\
\& =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{4 \pi a^{2} \sigma}{c}-\frac{4 \pi b^{2} \sigma}{c}+\frac{4 \pi c^{2} \sigma}{c}\right] \\
\& =\frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}}{c}-\frac{b^{2}}{c}+c\right]
\end{aligned}
\] \\
Now, we have
\[
\begin{aligned}
\& V_{A}=V_{C} \\
\& \frac{\sigma}{\varepsilon_{0}}(a-b+c)=\frac{\sigma}{\varepsilon_{0}}\left(\frac{a^{2}}{c}-\frac{b^{2}}{c}+c\right) \\
\& a-b=\frac{(a-b)(a+b)}{c}
\end{aligned}
\] \\
or \(a+b=c\)
\end{tabular} \& 1

1
1
1

\hline
\end{tabular}

30.	Potentiometer: Circuit diagram Principle Method for to compare the emfs of the two cells. Meter bridge: Circuit diagram Principle Determination the unknown resistance of a given wire	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 2 \end{aligned}$
31.	(i) We know that if the number of turns in the inductor decreases, then inductance L decreases. So, the net resistance of the circuit decreases and, hence, the current through the circuit increases, increasing the brightness of the bulb. (ii) If soft iron rod is inserted in the inductor, then the inductance L increases. Therefore, the current through the bulb will decrease, decreasing the brightness of the bulb. (iii) If the capacitor of reactance $X_{\mathrm{C}}=X_{\mathrm{L}}$ is connected in series with the circuit, then $\begin{aligned} & Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}} \\ & \Rightarrow Z=R\left(\because X_{L}=X_{C}\right) \end{aligned}$ This is a case of resonance. In this case, maximum current will flow through the circuit. Hence, the brightness of the bulb will increase.	1 1 1
32.	Difference between diamagnetic and ferromagnetic materials in respect of their (i) intensity of magnetization (ii) behavior in non uniform magnetic field and (iii) susceptibility	$\begin{aligned} & \hline 1+1+ \\ & 1 \end{aligned}$
33.	Vertical component of earth magnetic field $\begin{aligned} & \mathrm{V}=\mathrm{B}_{\mathrm{e}} \operatorname{Sin} \theta \\ & \mathrm{v}=1800 \mathrm{~km} / \mathrm{h}=500 \mathrm{~m} / \mathrm{s} \end{aligned}$ Induced emf $\begin{aligned} \varepsilon=\mathrm{Vvl} & =\left(\mathrm{B}_{\mathrm{e}} \operatorname{Sin} \theta\right) \mathrm{vl} \\ & =\left(5 \times 10^{-4} \times 0.5\right) \times 500 \times 25=3.1 \mathrm{~V} \end{aligned}$	
34.	(i) Given $V=V_{0} \sin (1000 t+\phi)$ $\omega=1000 \mathrm{~s}^{-1}$ Given, $\begin{aligned} & L=100 \mathrm{mH} \\ & C=2 \mu \mathrm{~F} \\ & R=400 \Omega \end{aligned}$ Phase difference $\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)$ $\begin{aligned} & X_{L}=\omega \mathrm{L}=1000 \times 100 \times 10^{-3}=100 \Omega \\ & X_{C}=\frac{1}{\omega C}=\frac{1}{1000 \times 2 \times 10^{-6}}=500 \Omega \\ & \phi=\tan ^{-1}\left(\frac{100-500}{400}\right)=\tan ^{-1}(-1) \end{aligned}$ $\phi=-45^{0}$ and the current is leading the voltage.	$1 / 2$ $1 / 2$ $1 / 2$

	(ii) For power factor to be unity, $R=Z$ or $X_{L}=X_{C}$ $\omega^{2}=\frac{1}{L C}(C=$ resultant capacitance $)$ $10^{6}=\frac{1}{100 \times 10^{-3} \times C^{\prime}}$ $\Rightarrow C^{\prime}=10^{-5} \mathrm{~F}$	$1 / 2$
For two capacitance in parallel, resultant capacitance $C^{\prime}=C+C_{7}$ $10^{-5}=0.2 \times 10^{-5}+C_{7}$ $\Rightarrow C_{7}=8 \mu \mathrm{~F}$	$1 / 2$	

	Function of uniform radial magnetic field Function of soft iron core Definition of (i) current sensitivity and (ii) voltage sensitivity of a galvanometer. OR Cyclotron: Diagram Principle working Show that the period of a revolution of an ion is independent of its speed or radius of the orbit Any two uses of Cyclotron	$\begin{aligned} & 1 / 2 \\ & 1 / 21 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 2 \\ & 1 / 21 / 2 \end{aligned}$
37.	(i) Definition mutual inductance and its SI unit. (ii) Derivation of mutual induction between of two long co-axial solenoids of same length wound one over the other. $\mathrm{M}=\left(\mu_{0} \mathrm{~N}_{1} \mathrm{~N}_{2} \pi \mathrm{r}^{2}\right) / \mathrm{L}$ Any two factors on which mutual inductance depend. OR (i) Definition self inductance and its SI unit. (ii) Derivation of expression self induction of long solenoid. Any two factors on which self inductance depend.	$\begin{aligned} & 1,1 / 2 \\ & \\ & 21 / 2 \\ & 1 / 21 / 2 \\ & \\ & 1,1 / 2 \\ & 2^{1 / 2} \\ & 1 / 21 / 2 \end{aligned}$

